Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
BMC Ecol Evol ; 21(1): 75, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941079

RESUMEN

BACKGROUND: Despite progress in genomic analysis of spiders, their chromosome evolution is not satisfactorily understood. Most information on spider chromosomes concerns the most diversified clade, entelegyne araneomorphs. Other clades are far less studied. Our study focused on haplogyne araneomorphs, which are remarkable for their unusual sex chromosome systems and for the co-evolution of sex chromosomes and nucleolus organizer regions (NORs); some haplogynes exhibit holokinetic chromosomes. To trace the karyotype evolution of haplogynes on the family level, we analysed the number and morphology of chromosomes, sex chromosomes, NORs, and meiosis in pholcids, which are among the most diverse haplogyne families. The evolution of spider NORs is largely unknown. RESULTS: Our study is based on an extensive set of species representing all major pholcid clades. Pholcids exhibit a low 2n and predominance of biarmed chromosomes, which are typical haplogyne features. Sex chromosomes and NOR patterns of pholcids are diversified. We revealed six sex chromosome systems in pholcids (X0, XY, X1X20, X1X2X30, X1X2Y, and X1X2X3X4Y). The number of NOR loci ranges from one to nine. In some clades, NORs are also found on sex chromosomes. CONCLUSIONS: The evolution of cytogenetic characters was largely derived from character mapping on a recently published molecular phylogeny of the family. Based on an extensive set of species and mapping of their characters, numerous conclusions regarding the karyotype evolution of pholcids and spiders can be drawn. Our results suggest frequent autosome-autosome and autosome-sex chromosome rearrangements during pholcid evolution. Such events have previously been attributed to the reproductive isolation of species. The peculiar X1X2Y system is probably ancestral for haplogynes. Chromosomes of the X1X2Y system differ considerably in their pattern of evolution. In some pholcid clades, the X1X2Y system has transformed into the X1X20 or XY systems, and subsequently into the X0 system. The X1X2X30 system of Smeringopus pallidus probably arose from the X1X20 system by an X chromosome fission. The X1X2X3X4Y system of Kambiwa probably evolved from the X1X2Y system by integration of a chromosome pair. Nucleolus organizer regions have frequently expanded on sex chromosomes, most probably by ectopic recombination. Our data suggest the involvement of sex chromosome-linked NORs in achiasmatic pairing.


Asunto(s)
Arañas , Animales , Cariotipo , Cariotipificación , Meiosis/genética , Cromosomas Sexuales/genética , Arañas/genética
3.
Sci Rep ; 9(1): 3001, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816146

RESUMEN

Spiders are an ancient and extremely diverse animal order. They show a considerable diversity of genome sizes, karyotypes and sex chromosomes, which makes them promising models to analyse the evolution of these traits. Our study is focused on the evolution of the genome and chromosomes in haplogyne spiders with holokinetic chromosomes. Although holokinetic chromosomes in spiders were discovered a long time ago, information on their distribution and evolution in these arthropods is very limited. Here we show that holokinetic chromosomes are an autapomorphy of the superfamily Dysderoidea. According to our hypothesis, the karyotype of ancestral Dysderoidea comprised three autosome pairs and a single X chromosome. The subsequent evolution has frequently included inverted meiosis of the sex chromosome and an increase of 2n. We demonstrate that caponiids, a sister clade to Dysderoidea, have enormous genomes and high diploid and sex chromosome numbers. This pattern suggests a polyploid event in the ancestors of caponiids. Holokinetic chromosomes could have arisen by subsequent multiple chromosome fusions and a considerable reduction of the genome size. We propose that spider sex chromosomes probably do not pose a major barrier to polyploidy due to specific mechanisms that promote the integration of sex chromosome copies into the genome.


Asunto(s)
Evolución Molecular , Genoma , Cariotipo , Poliploidía , Arañas/genética , Animales , Meiosis
4.
BMC Genet ; 18(1): 19, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28253860

RESUMEN

BACKGROUND: Acipenseriformes is a basal lineage of ray-finned fishes and comprise 27 extant species of sturgeons and paddlefishes. They are characterized by several specific genomic features as broad ploidy variation, high chromosome numbers, presence of numerous microchromosomes and propensity to interspecific hybridization. The presumed palaeotetraploidy of the American paddlefish was recently validated by molecular phylogeny and Hox genes analyses. A whole genome duplication in the paddlefish lineage was estimated at approximately 42 Mya and was found to be independent from several genome duplications evidenced in its sister lineage, i.e. sturgeons. We tested the ploidy status of available chromosomal markers after the expected rediploidization. Further we tested, whether paralogs of Hox gene clusters originated from this paddlefish specific genome duplication are cytogenetically distinguishable. RESULTS: We found that both paralogs HoxA alpha and beta were distinguishable without any overlapping of the hybridization signal - each on one pair of large metacentric chromosomes. Of the HoxD, only the beta paralog was unequivocally identified, whereas the alpha paralog did not work and yielded only an inconclusive diffuse signal. Chromosomal markers on three diverse ploidy levels reflecting different stages of rediploidization were identified: quadruplets retaining their ancestral tetraploid condition, semi-quadruplets still reflecting the ancestral tetraploidy with clear signs of advanced rediploidization, doublets were diploidized with ancestral tetraploidy already blurred. Also some of the available microsatellite data exhibited diploid allelic band patterns at their loci whereas another locus showed more than two alleles. CONCLUSIONS: Our exhaustive staining of paddlefish chromosomes combined with cytogenetic mapping of ribosomal genes and Hox paralogs and with microsatellite data, brings a closer look at results of the process of rediploidization in the course of paddlefish genome evolution. We show a partial rediploidization represented by a complex mosaic structure comparable with segmental paleotetraploidy revealed in sturgeons (Acipenseridae). Sturgeons and paddlefishes with their high propensity for whole genome duplication thus offer suitable animal model systems to further explore evolutionary processes that were shaping the early evolution of all vertebrates.


Asunto(s)
Diploidia , Proteínas de Peces/genética , Peces/genética , Duplicación de Gen , Genómica , Hibridación Fluorescente in Situ , Homología de Secuencia de Ácido Nucleico , Animales , Técnicas de Genotipaje , Repeticiones de Microsatélite/genética , Ribosomas/genética
5.
J Exp Zool B Mol Dev Evol ; 328(7): 607-619, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28035749

RESUMEN

Genomic GC content can vary locally, and GC-rich regions are usually associated with increased DNA thermostability in thermophilic prokaryotes and warm-blooded eukaryotes. Among vertebrates, fish and amphibians appeared to possess a distinctly less heterogeneous AT/GC organization in their genomes, whereas cytogenetically detectable GC heterogeneity has so far only been documented in mammals and birds. The subject of our study is the gar, an ancient "living fossil" of a basal ray-finned fish lineage, known from the Cretaceous period. We carried out cytogenomic analysis in two gar genera (Atractosteus and Lepisosteus) uncovering a GC chromosomal pattern uncharacteristic for fish. Bioinformatic analysis of the spotted gar (Lepisosteus oculatus) confirmed a GC compartmentalization on GC profiles of linkage groups. This indicates a rather mammalian mode of compositional organization on gar chromosomes. Gars are thus the only analyzed extant ray-finned fishes with a GC compartmentalized genome. Since gars are cold-blooded anamniotes, our results contradict the generally accepted hypothesis that the phylogenomic onset of GC compartmentalization occurred near the origin of amniotes. Ecophysiological findings of other authors indicate a metabolic similarity of gars with mammals. We hypothesize that gars might have undergone convergent evolution with the tetrapod lineages leading to mammals on both metabolic and genomic levels. Their metabolic adaptations might have left footprints in their compositional genome evolution, as proposed by the metabolic rate hypothesis. The genome organization described here in gars sheds new light on the compositional genome evolution in vertebrates generally and contributes to better understanding of the complexities of the mechanisms involved in this process.


Asunto(s)
Peces/genética , Genoma , Mamíferos/genética , Filogenia , Animales , Biología Computacional , Genómica , Cariotipo , Factores de Tiempo
6.
Genetica ; 139(2): 155-65, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21120681

RESUMEN

Karyotypes of eight populations of Sphaerium corneum and two populations of S. nucleus (Bivalvia: Sphaeriidae) from central Europe were compared. The basic set of these hermaphroditic molluscs is formed by 30 biarmed autosomes and exhibits only slight interpopulational variation in morphology. These differences are not species-specific. One pair of nucleolar organiser regions was detected by silver staining. The prophase and metaphase of the first meiotic division is highly modified in both species. Pachytene is followed by a diffuse stage, characterized by decondensation of chromosomes and by enhanced metabolic activity. The diffuse stage has not been reported in bivalves so far. Bivalents of the following stages are achiasmatic both in the testicular and ovarian part of the gonad. The two species are further peculiar for occurrence of B chromosomes, which is a rare phenomenon in organisms with achiasmatic meiotic systems. The small metacentric B chromosomes exhibit intra- and interindividual variability in number, they show irregular meiotic pairing and segregation (formation of bivalents or univalents), and possess larger proportional amount of constitutive heterochromatin than the A chromosomes. Interestingly, the B chromosomes also undergo decondensation during the diffuse stage like A chromosomes which may indicate their transcriptional activity.


Asunto(s)
Bivalvos/genética , Núcleo Celular/genética , Cromosomas/fisiología , Meiosis/fisiología , Animales , Femenino , Heterocromatina , Cariotipificación , Masculino , Profase Meiótica I/fisiología , Región Organizadora del Nucléolo/metabolismo , Ovario/citología , Tinción con Nitrato de Plata/métodos , Testículo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...